

Welcome

push-dev-dashboard is the code for Mozilla Developer Services dashboard - where web
developers can manage how their web apps and sites use services like
Mozilla Push Service [https://autopush.readthedocs.org/en/latest/].

Resources

[image: Travis-CI Build Status]
 [https://travis-ci.org/mozilla-services/push-dev-dashboard][image: https://codecov.io/github/mozilla-services/push-dev-dashboard/coverage.svg?branch=master]
 [https://codecov.io/github/mozilla-services/push-dev-dashboard?branch=master][image: Requirements Status]
 [https://requires.io/github/mozilla-services/push-dev-dashboard/requirements/?branch=master]

	Code:	https://github.com/mozilla-services/push-dev-dashboard

	License:	MPL2

	Documentation:	http://push-dev-dashboard.readthedocs.org/

	Issues:	https://github.com/mozilla-services/push-dev-dashboard/issues

	CI:	https://travis-ci.org/mozilla-services/push-dev-dashboard (unit
tests)

https://circleci.com/gh/mozilla-services/push-dev-dashboard
(deployment artifacts)

https://services-qa-jenkins.stage.mozaws.net:8443/job/push-dashboard_e2e-test_prod/ (selenium/integration tests)

	Servers:	https://pushdevdashboard-default.stage.mozaws.net/ (stage)
https://push-dashboard.services.mozilla.com/ (prod)

	IRC:	irc://irc.mozilla.org/push

Contents

	Development
	Requirements

	Install Locally

	Run it

	Enable Firefox Accounts Auth

	Run in production mode

	Working on Docs

	Updating Translations

	Adding a Translation

	What to work on

	Testing
	Back-end python tests

	Back-end style tests

	Front-end style tests

	Translation lint tests

	Selenium/Integration tests

	Deployment
	Deploy onto Deis

	Enable Firefox Accounts Auth on your Deis app

	Run-book
	Processes

	Environment Variables

Development

Requirements

	python [https://www.python.org/] 2.7, virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/], pip [https://pip.readthedocs.org/en/latest/] for app server

	npm [https://www.npmjs.com/] for front-end testing

Install Locally

	Clone [http://git-scm.com/book/en/Git-Basics-Getting-a-Git-Repository#Cloning-an-Existing-Repository] and change to the directory:

git clone git@github.com:mozilla-services/push-dev-dashboard.git
cd push-dev-dashboard

	Create and activate a virtual environment [http://docs.python-guide.org/en/latest/dev/virtualenvs/] (Can also use virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper]):

virtualenv env
source env/bin/activate

	Install requirements [http://pip.readthedocs.org/en/latest/user_guide.html#requirements-files]:

pip install -r requirements-dev.txt
npm install
npm link stylus yuglify

	Copy the .env-dist file to .env:

cp .env-dist .env

	Source the .env file to set environment config vars (Can also use autoenv [https://github.com/kennethreitz/autoenv]):

source .env

	`Migrate`_ DB tables

python manage.py migrate

	Create a superuser [https://docs.djangoproject.com/en/1.9/ref/django-admin/#django-admin-createsuperuser]:

python manage.py createsuperuser

Run it

	Source the .env file to set environment config vars (Can also use autoenv [https://github.com/kennethreitz/autoenv]):

source .env

	Activate the virtual environment [http://docs.python-guide.org/en/latest/dev/virtualenvs/] (Can also use virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper]):

source env/bin/activate

	Run it:

python manage.py runserver

Enable Firefox Accounts Auth

To enable Firefox Accounts authentication, you can use our local development
OAuth client app.

	Add a django-allauth social app [http://127.0.0.1:8000/admin/socialaccount/socialapp/add/] for Firefox Accounts (Log in as the
superuser account you created):
	Provider: Firefox Accounts

	Name: fxa

	Client id: 7a4cd4ca0fb1b5c9

	Secret key: c10059ba24e6715a1b6f2c80f1cc398fb6a39ca18bc7554e894b36ea85b88eeb

	Sites: example.com -> Chosen sites

	Log out of the admin account [http://127.0.0.1:8000/admin/logout/]

	Sign in with a Firefox Account at http://127.0.0.1:8000.

Run in production mode

Follow these steps to emulate production (for example, to test compressed
assets). Run all commands from the project root.

	Stop runserver if it’s already running

	In .env, set DJANGO_DEBUG to False

	Run python manage.py collectstatic

	
	Install stunnel [https://www.stunnel.org/index.html]

	
	Mac: brew install stunnel

	Run this command to generate a local cert and key for stunnel (you can use
the default values for all prompts):
openssl req -new -x509 -days 9999 -nodes -out stunnel/stunnel.pem -keyout stunnel/stunnel.pem

	Run stunnel stunnel/dev_https

	In another terminal, run HTTPS=1 python manage.py runserver 127.0.0.1:5000

	Go to https://127.0.0.1:8443 to confirm the certificate exception and browse
the site

Working on Docs

Install doc requirements:

pip install -r requirements-docs.txt

Building the docs is easy:

cd docs
sphinx-build . html

Read the beautiful docs:

open html/index.html

Updating Translations

	Run makemessages to make updated django.po files:

python manage.py makemessages --keep-pot

	Commit the updates to git:

git add locale
git commit -m "Updating translations {YYYY-MM-DD}"

Adding a Translation

	First, Update translations

	Make the new {locale} directory for the new language:

mkdir locale/{locale}

	Run makemessages to make the django.po file for it:

python manage.py makemessages -l {locale}

	Add the new directory to git:

git add locale/{locale}
git commit -m "Adding {locale} locale"

What to work on

We have Issues [https://github.com/mozilla-services/push-dev-dashboard/issues].

Testing

Back-end python tests

	Install test requirements:

pip install -r requirements-test.txt

	Run the test suites:

python manage.py test

Back-end style tests

	Install test requirements:

pip install flake8

	Run the test suites:

flake8 .

Front-end style tests

	Install test requirements:

npm install

	Run the test suites:

npm test

Translation lint tests

	Install test requirements:

pip install -r requirements-l10n.txt

	Run the test suites:

cd locale
dennis-cmd lint .

Selenium/Integration tests

	Install test requirements:

pip install -r requirements-test.txt

	Set environment variables in .env file:

DJANGO_DEBUG_TOOLBAR=False
TESTING_WEBDRIVER_TIMEOUT=10
TESTING_FXA_ACCOUNT_EMAIL=tester@test.com
TESTING_FXA_ACCOUNT_PASSWORD=testpass

	Required DJANGO_DEBUG_TOOLBAR - The django debug toolbar interferes with
selenium clicking on the sign-in button; disable it. NOTE: Make sure you
restart the django process.

	Required TESTING_WEBDRIVER_TIMEOUT - Number of seconds selenium/Firefox will
wait before timing out. Default is 0 which skips selenium test.

	Required TESTING_FXA_ACCOUNT_EMAIL - Email of Firefox Account to use
during tests.

	Required TESTING_FXA_ACCOUNT_PASSWORD - Password of Firefox Account
to use during tests.

	TESTING_SITE - The dashboard domain/site that selenium/Firefox will
use. Default is http://127.0.0.1:8000

	TEST_PUSH_SERVER_URL - The dom.push.serverURL that
selenium/Firefox will use. Default is the dev environment:
wss://benpushstack-1704054003.dev.mozaws.net/
Note: Make sure the Push Messages API [https://github.com/mozilla-services/push-messages] server in
PUSH_MESSAGES_API_ENDPOINT matches this push server.

	Run the test suites:

python manage.py test

Deployment

push-dev-dashboard is designed with 12-factor app philosophy [http://12factor.net/], so you can
easily deploy your changes to your own app.

Deploy onto Deis

Note: Mozilla used to run our own Deis cluster, but it has been shut down. The
following instructions should work to deploy the code to your own Deis cluster.

	Install the deis client [http://docs.deis.io/en/latest/using_deis/install-client.html].

	Install deis on AWS [http://docs.deis.io/en/latest/installing_deis/aws/].

	Create the application:

deis create dev-dashboard-username

	Push code to the deis remote:

git push deis master

	Create an RDS Postgres instance [https://console.aws.amazon.com/rds/home?region=us-east-1#launch-dbinstance:ct=dashboard:] in us-east-1 with default settings except:

	DB Instance Class: db.t2.micro

	Allocated Storag: 5 GB

	VPC: vpc-9c2b0ef8

	In the RDS Instance configuration details, click the “Security Groups”.
(Usually something like “rds-launch-wizard-N (sg-abcdef123)”)

	In the security group, under the “Inbound” tab, change the source to allow
the deis cluster hosts.

	Set the DATABASE_URL environment variable to match the RDS DB:

deis config:set DATABASE_URL=postgres://username:password@endpoint/dbname

	Migrate DB tables on the new RDS instance:

deis run python manage.py migrate

	Dock to app instance to create a superuser:

deisctl dock dev-dashboard-username
/app/.heroku/python/bin/python manage.py createsuperuser

	Open the new deis app:

deis open

Enable Firefox Accounts Auth on your Deis app

To enable Firefox Account sign-ins on your Deis app, you will need to create
your own Firefox Accounts OAuth Client for your app domain.

	Go to register your own Firefox Accounts OAuth Client [https://oauth-stable.dev.lcip.org/console/client/register]:

	Client name: dev-dashboard-username

	Redirect URI: https://<your-push-dev-dashboard-app-on-deis-domain>/accounts/fxa/login/callback/

	Trusted Mozilla Client: CHECKED

Be sure to copy the client secret - you can’t see it again.

	Go to https://<your-push-dev-dashboard-app-on-deis-domain>/admin/socialaccount/socialapp/add/
to Enable Firefox Accounts Auth like a local machine; this time using your own new Firefox Accounts OAuth Client ID and Secret

	Sign in at https://<your-push-dev-dashboard-app-on-deis-domain>/ with a Firefox
Account.

Run-book

push-dev-dashboard is written as a monolithic django application with 2
processes. It’s written with 12 factor methodology, so it is configured almost
entirely by environment variables.

Travis CI [https://travis-ci.org/mozilla-services/push-dev-dashboard] is used for unit, docs, l10n, and coding style tests before code
lands in master.

Circle CI [https://circleci.com/gh/mozilla-services/push-dev-dashboard] is used to build docker containers for deployment.

Jenkins [https://services-qa-jenkins.stage.mozaws.net:8443/job/push-dashboard_e2e-test_prod/] is used to run the selenium integration tests on deployments to the
stage and production servers.

Processes

Web

The web process is a django web app run by gunicorn. It is defined as the
CMD instruction in the Dockerfile.

clock

The clock process is a python script run by the django_extensions
runscript command defined in Procfile. It uses APScheduler to call
the start_recording_push_apps django command.

Environment Variables

	REQUIRED DATABASE_URL - database connection url. See the dj-database-url
URL schema [https://github.com/kennethreitz/dj-database-url#url-schema] reference

	REQUIRED PUSH_MESSAGES_API_ENDPOINT - endpoint for Push Messages API [https://github.com/mozilla-services/push-messages].

	REQUIRED FXA_OAUTH_ENDPOINT - endpoint for FxA oauth provider. See
the django-allauth Firefox Accounts [https://django-allauth.readthedocs.io/en/latest/providers.html#firefox-accounts] reference.

	REQUIRED FXA_PROFILE_ENDPOINT - endpoint for FxA profile. See the
django-allauth Firefox Accounts [https://django-allauth.readthedocs.io/en/latest/providers.html#firefox-accounts] reference.

Index

 nav.xhtml

 Table of Contents

 		Welcome

 		Development

 		Requirements

 		Install Locally

 		Run it

 		Enable Firefox Accounts Auth

 		Run in production mode

 		Working on Docs

 		Updating Translations

 		Adding a Translation

 		What to work on

 		Testing

 		Back-end python tests

 		Back-end style tests

 		Front-end style tests

 		Translation lint tests

 		Selenium/Integration tests

 		Deployment

 		Deploy onto Deis

 		Enable Firefox Accounts Auth on your Deis app

 		Run-book

 		Processes

 		Web

 		clock

 		Environment Variables

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

